

Wasserstoff - Herausforderung für die Sicherheit?

HUSUM Wind, watt_2.0-Forum, Husum, 09/2021

www.ep-ing.de

40 Jahre Sachverstand

Explosionsschutz

Gewässerschutz

BetrSichV Auswirkungsbetrachtungen

Explosionsschutzdokument GefstoffV

Elektrische Anlagen Sicherheitsbericht

Gefährdungsbeurteilung Feuerschutzklausel 3602

§§15, 16 BetrSichV Eignungsfeststellung

Systematische Gefahrenanalyse Thermographie

Prüfungen zündgefahrenbewertung KAS 18

Wasserstoff – Herausforderung für die Sicherheit?

- 1. Sicherheit
- 2. Eigenschaften
- 3. Erfahrungen
- 4. Anforderungen
 - Hersteller
 - Betreiber
 - Antragsteller
- 5. Zusammenfassung

Transport

1. Sicherheit

- Versorgungssicherheit
- Finanzielle Sicherheit
- Sicherheit für
 - Nachbarn
 - Umwelt
 - Arbeitnehmer
 - Gesetzgeber
 - "Behörde"
 - **—** ...

2. Eigenschaften

Ausgewählte sicherheitstechnische Kennwerte:

- Zündenergie
- Zündtemperatur
- Explosionsgrenzen
- Relative Dichte zu Luft

Vergleich

- Ottokraftstoff
- Methan (CNG)
- Propan (LPG)

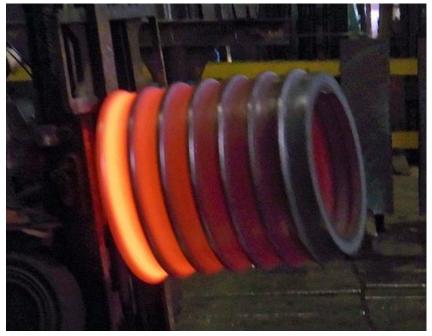
2. Eigenschaften

	Wasserstoff	Ottokraftstoff	Methan	Propan
Zündenergie	0,016 mJ	0,28 mJ	0,28 mJ	0,25 mJ

Geringe Zündenergie genügt zur Zündung

Aufgeladener Körper	Kapazität (pF)	Potenzial (kV)	Energie (mJ)
Flansch	10	10	0,5
kleine Metallgegenstände, z.B. Schaufel, Schlauchdüse			0,5 – 1
Eimer			0,5
Kleinbehälter bis 50 I			2 – 3
Metallbehälter von 200 I bis 500 I		10 – 60	
Person			7 – 15
große Anlagenteile, von einer geerdeten Struktur unmittelbar umgeben			11 – 120

2. Eigenschaften

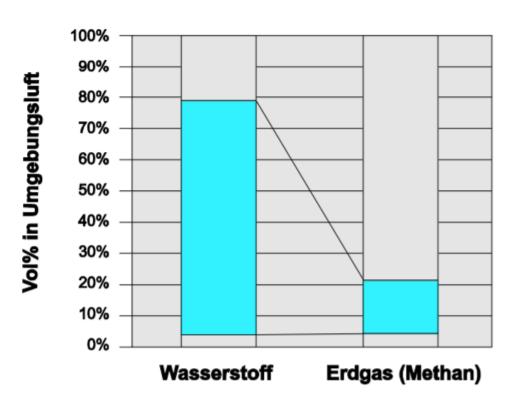

	Wasserstoff	Ottokraftstoff	Methan	Propan
Zündtemperatur	560 °C	220 °C	595 °C	470 °C

Zündung von Benzin an heißen Oberflächen

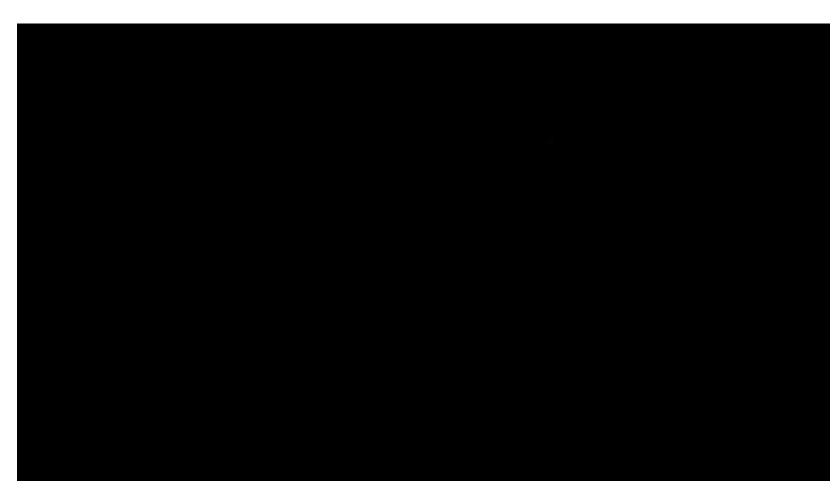
Zündung der "Gase" an Oberflächen eher "schwieriger", Rotglut ab ca. 525 °C

Hinweis:

Keine "Selbstentzündung" durch ausströmendes Gas



2. Eigenschaften


	Wasserstoff	Ottokraftstoff	Methan	Propan
Explosionsgrenzen	4 % ÷ 77 %	0,6 % ÷ 8 %	4,4 % ÷ 17 %	1,7 % bis 10,8 %

Sehr weite Explosionsgrenzen bei Wasserstoff

-EP₂

2. Eigenschaften

2. Eigenschaften

	Wasserstoff	Ottokraftstoff	Methan	Propan
Relative Dichte zu Luft	0,07	> 1	0,56	1,55

Fluch oder Segen, situationsabhängig:

- Wasserstoff sammelt sich an der Decke oder ist "weg"
- Benzindämpfe und Propandämpfe sammeln sich in Tiefpunkten und verflüchtigen sich schwer

2. Eigenschaften

Wasserstoff ist aufgrund seiner Eigenschaften <u>nicht</u> pauschal "gefährlicher" als konventionelle Energieträger.

Andere Eigenschaften positiv z.B. Toxizität

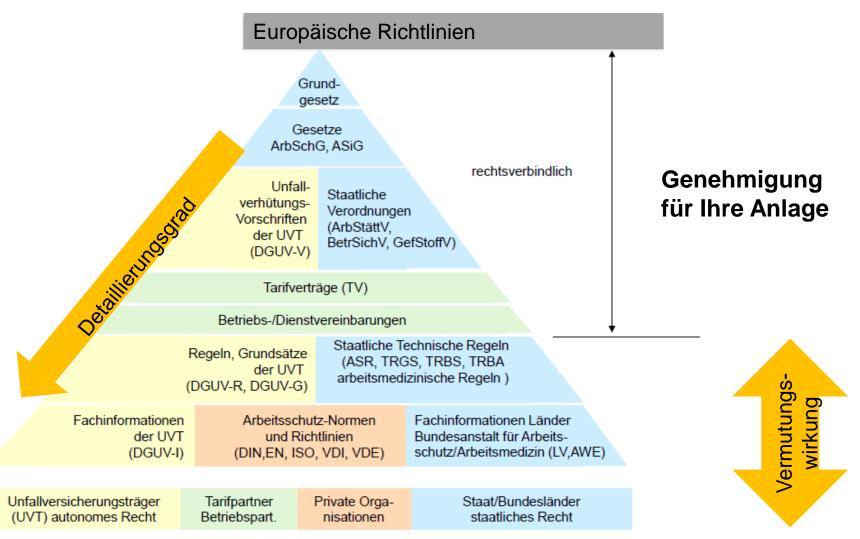
3. Erfahrungen

Umgang mit Wasserstoff in der chemischen Industrie seit ca. 100 Jahren,

- Werkstoffe
- Dichtstoffe
- Zeitstandverhalten
- ...

Auswertung ZEMA - Zentrale Melde- und Auswertestelle für Störfälle: 13 dokumentierte Störfälle 1993 – 2021, von 883 Ereignissen

Neue / alte Erfahrungen:


Explosion an Wasserstoff-Tankstelle, Sandvika (Norwegen), 11.06.2019 Ursache: Fehlerhafte Montage von Einschraubstutzen an einem Hochdrucktank

4. Anforderungen

Verschiedene

- Hersteller
- Betreiber
- Antragsteller

4. Anforderungen Hersteller

EU-Richtlinien, insbesondere DGRL (2014/68/EU)) und MRL (2006/42/EG) z.B. Baugruppe nach DGRL oder als Gesamtheit von Maschinen nach MRL

DGRL:

Wesentliche Sicherheitsanforderungen

- Analyse der Gefahren und Risiken
- ... hohes Maß des Schutzes von Gesundheit und Sicherheit

MRL

Risikobeurteilung

grundlegenden Sicherheits- und Gesundheitsschutzanforderungen

4. Anforderungen Hersteller

Konkret für Ptg-Anlagen:

Power-to-Gas-Leitfaden zur Integration Erneuerbarer Energien

Technischer Leitfaden für Power-to-Gas-Anlagen Errichtung, Inbetriebnahme und Betrieb, Dezember 2020

(272 Seiten!)

Grundsätzlich:

Baugruppe nach DGRL oder "Gesamtheit von Maschinen" Vertraglich festhalten!

4. Anforderungen Betreiber

- Energieanlage (EnWG) oder überwachungsbedürftige Anlagen (BetrSichV)
- Arbeitgeberpflichten (BetrSichV, GefStoffV)
- Durchführung Gefährdungsbeurteilung
- Erstellen Explosionsschutzdokument (GefStoffV) (ggf. Konflikt mit dem Hersteller!)
- Überwachung
- Prüfungen der Anlage (BetrSichV)
- Instandhaltung
- ...

4. Anforderungen Betreiber

Randbedingungen liefern die technischen Regeln mit Vermutungswirkung

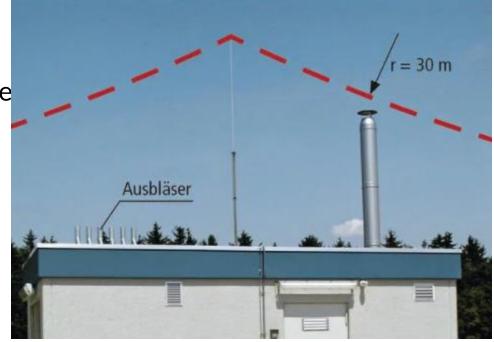
TRBS und TRGS anwenden bzw. deren Ziele Erreichen,

insbesondere: Dichtheit

Überwachung, Lüftung

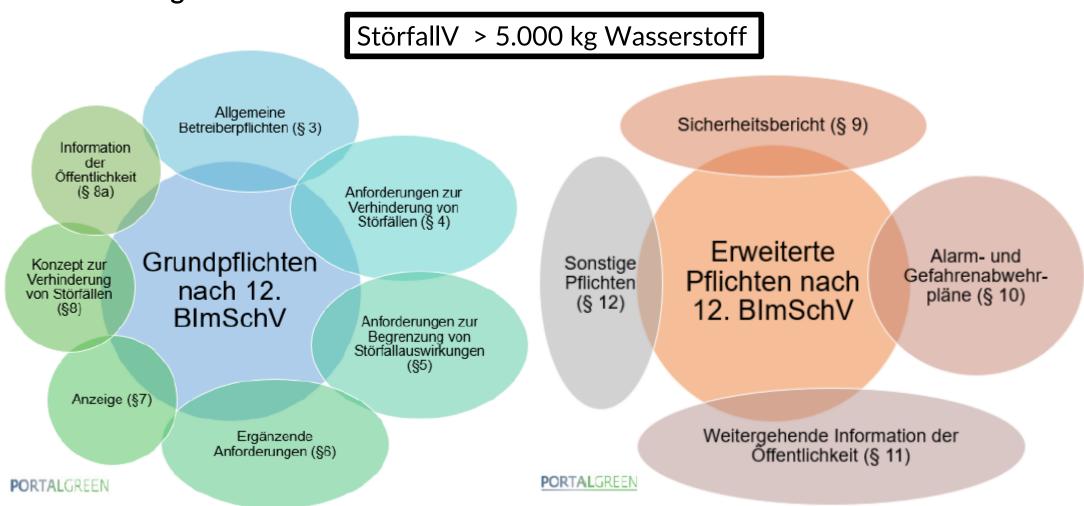
Gestaltung, Dokumentation,... obliegt dem Betreiber

Plausibilität muss erreicht werden,


Freiheiten um die "dieselbe" Sicherheit zu erre

→ mehr Freiheitsgrade

mehr Verantwortung


mehr Dokumentation

(Beispiele: Blitzschutz)

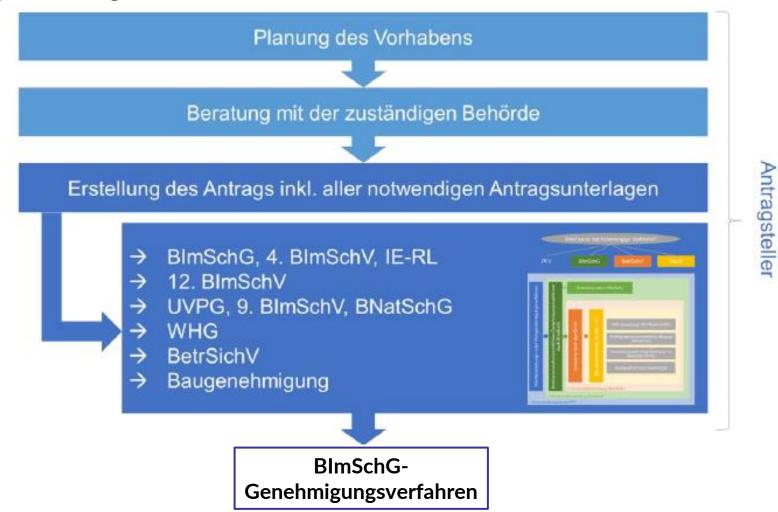
4. Anforderungen Betreiber

4. Anforderungen Betreiber

Konkret für Ptg-Anlagen:

- Sicherheitsbericht (§ 9 StörfallV)
- § 13-Gutachten (9. BlmSchV)
- Ausbreitungsrechnung (KAS 18)
- Gefahrenanalysen
- BetrSichV- und §29a-BImSchG-Prüfungen
- Gefährdungsbeurteilung
- Explosionsschutzdokument

PORTALGREEN


Power-to-Gas-Leitfaden zur Integration Erneuerbarer Energien

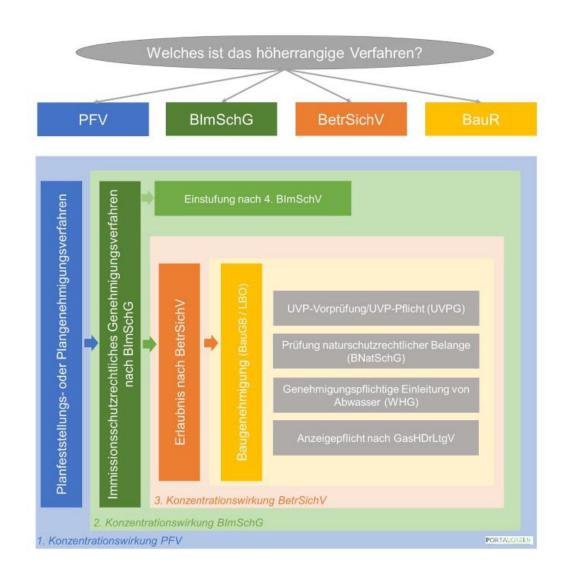
Technischer Leitfaden für Power-to-Gas-Anlagen Errichtung, Inbetriebnahme und Betrieb, Dezember 2020

(272 Seiten!)

4. Anforderungen Antragsteller

4. Anforderungen Antragsteller

BImSchG-Genehmigungsverfahren


BImSchG-Genehmigungsverfahren:

§18 BetrSichV-Erlaubnis

§ 40 AwSV

KAS 18

Angaben zur Anlagensicherheit und zum Explosionsschutz

4. Anforderungen Antragsteller

BlmSchG-Genehmigungsverfahren

BlmSchG-Genehmigungsverfahren

4. BlmSchV

4. "Chemische Erzeugnisse, Arzneimittel, Mineralöl-raffination und Weiterverarbeitung 4.1.12

"Anlagen zur Herstellung von Stoffen oder Stoffgruppen durch chemische, biochemische oder biologische Umwandlung in industriellem Umfang […] zur Herstellung von Gasen wie […] Wasserstoff, […]"

9.3 Lagerung

4. Anforderungen Antragsteller

PORTALGREEN

Power-to-Gas-Leitfaden zur Integration Erneuerbarer Energien

Genehmigungsrechtlicher Leitfaden für Power-to-Gas-Anlagen Errichtung, Inbetriebnahme und Betrieb, Dezember 2020

(189 Seiten!)

5. Zusammenfassung

Wasserstoff – Herausforderung für die Sicherheit?

- Wasserstoff kein neuer Gefahrstoff
- Vielzahl von bestehender Regularien
 - Genehmigung
 - Herstellung
 - Betrieb
- Einzelfall / Anwendungsfall betrachten
- Chancen der Freiheit nutzen, aber auch "Grenzen der Sicherheit" ermitteln und dokumentieren

Kurzum: Keine neuen Herausforderung!

Ende.

Fragen?

Beratende Ingenieure für Anlagensicherheit

Andreas EiklenborgDipl.-Ing. (FH) Elektrotechnik

Blinder Weg 4, 26789 Leer

Tel.: 0491 99 91 151 Fax.: 0491 99 91 150 Mobil 0173 10 53 676 andreas.eiklenborg@ep-ing.de

Marcus Feser
Dipl.-Ing. (FH) Umwelttechnik

Hirtenstieg 67, 22848 Norderstedt

Mobil 0173 52 84 00 1 marcus.feser@ep-ing.de

Max Westphalen

Dipl.-Ing. (FH) Chemieingenieur

Kiefernweg 35, 25451 Quickborn

Tel.: 04106 6409 369 Fax.: 04106 6409 368 Mobil 0173 10 53 677 max.westphalen@ep-ing.de

Jörg Heermann

Dipl.-Ing. (TU) Chemietechnik

Finkenau 28, 22081 Hamburg

Tel.: 040 46 09 20 82 Fax.: 040 46 06 34 70 Mobil 0173 10 53 678

joerg.heermann@ep-ing.de